

## **D-Xylose**

# **Colorimetric Microplate Assay Kit**

## **User Manual**

Catalog # CAK1238

(Version 2.3D)

Detection and Quantification of D-Xylose Content in Urine, Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media, Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.



| I. INTRODUCTION                          | 2 |
|------------------------------------------|---|
| II. KIT COMPONENTS                       | 3 |
| III. MATERIALS REQUIRED BUT NOT PROVIDED | 4 |
| IV. REAGENT PREPARATION                  | 5 |
| V. SAMPLE PREPARATION                    | 6 |
| VI. ASSAY PROCEDURE                      | 7 |
| VII. CALCULATION                         | 8 |
| VIII. TYPICAL DATA                       | 9 |



#### I. INTRODUCTION

In nature, D-xylose occurs mainly in the polysaccharide form as xylan, arabinoxylan, glucuronoarabinoxylan, xyloglucan and xylogalacturonan. Mixed linkage D-xylans are also found in certain seaweed species and a similar polysaccharide is thought to make up the backbone of psyllium gum. In humans, D-xylose is used in an absorption test to help diagnose problems that prevent the small intestine from absorbing nutrients, vitamins and minerals in food. D-Xylose is normally easily absorbed by the intestine. When problems with absorption occur, D-xylose is not absorbed and blood and urine levels are low. A D-xylose test can help to determine the cause of a child's failure to gain weight, especially when the child seems to be eating enough food. If, in a polysaccharide, the ratio of D-xylose to other sugars etc. is known, then the amount of the polysaccharide can be quantified from this knowledge plus the determined concentration of D-xylose in an acid hydrolysate. Xylans are a major portion of the polysaccharides that could potentially be hydrolysed to fermentable sugar for biofuel production.

D-Xylose Colorimetric Microplate Assay Kit provides a convenient tool for sensitive detection of D-Xylose in a variety of samples. D-xylose is oxidised by NAD+ to D-xylonic acid in the presence of xylose dehydrogenase. D-xylose is measured by the increase in absorbance at 450 nm.



#### **II. KIT COMPONENTS**

| Component             | Volume     | Storage |
|-----------------------|------------|---------|
| 96-Well Microplate    | 1 plate    |         |
| Assay Buffer          | 30 ml x 4  | 4 °C    |
| Reaction Buffer       | 10 ml x 1  | 4 °C    |
| Coenzyme              | Powder x 1 | -20 °C  |
| Enzyme                | Powder x 1 | -20 °C  |
| Dye Reagent A         | Powder x 1 | 4 °C    |
| Dye Reagent B         | 1 ml x 1   | 4 °C    |
| Standard              | Powder x 1 | 4 °C    |
| Plate Adhesive Strips | 3 Strips   |         |
| Technical Manual      | 1 Manual   |         |



### III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 450 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer



#### **IV. REAGENT PREPARATION**

- **Coenzyme**: Briefly centrifuge prior to opening. Add 1 ml Reaction Buffer to dissolve before use, store at 4 °C for 1 month after reconstitution.
- **Enzyme**: Briefly centrifuge prior to opening. Add 1 ml Reaction Buffer to dissolve before use, store at -80 °C for 1 month after reconstitution.

**Dye Reagent A**: Briefly centrifuge prior to opening. Add 9 ml distilled water to dissolve before use, mix, store at 4°C for 1 month after reconstitution.

Standard: Briefly centrifuge prior to opening. Add 1 ml distilled water to dissolve before use; then add 0.05 ml into 0.95 ml distilled water, mix, the concentration will be 1 mmol/L, store at 4 °C for 1 month after reconstitution. Perform 2-fold serial dilutions of the top standard solution using distilled water to make the standard curve. The concentration of standard curve could be 1/0.5/0.25/0.125/0.063/0.031/0.016/0.008 mmol/L.



#### V. SAMPLE PREPARATION

#### 1. For plant tissue samples

Weigh 100 mg of material into a screw-cap tube. Add 5 mL of 1.3 M HCl to each tube and cap the tubes. Incubate the tubes at 100 °C for 1 h. Stir the tubes intermittently during the incubation. Cool the tubes to room temperature, add 5 mL of 1.3 M NaOH to neutralize the pH. Adjust the volume to 100 mL with distilled water centrifuge at 1,500 g for 10 min, take the supernatant into a new centrifuge tube and keep it on ice for detection.

#### 2. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay Buffer for  $5 \times 10^6$  cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 10000g 4 °C for 15 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

For liquid samples
Detect directly.



### VI. ASSAY PROCEDURE

Add following reagents into the microplate:

| Reagent*                                                                              | Sample** | Standard | Blank |  |
|---------------------------------------------------------------------------------------|----------|----------|-------|--|
| Reaction Buffer                                                                       | 60 μl    | 60 μl    | 60 μl |  |
| Sample                                                                                | 20 µl    |          |       |  |
| Standard                                                                              |          | 20 μl    |       |  |
| Assay Buffer                                                                          |          |          | 20 µl |  |
| Coenzyme                                                                              | 10 µl    | 10 µl    | 10 µl |  |
| Enzyme                                                                                | 10 µl    | 10 µl    | 10 µl |  |
| Mix, cover the plate adhesive strip, put the plate into the convection oven, incubate |          |          |       |  |
| at 37 °C for 10 minutes.                                                              |          |          |       |  |
| Dye Reagent A                                                                         | 90 µl    | 90 µl    | 90 µl |  |
| Dye Reagent B                                                                         | 10 µl    | 10 µl    | 10 µl |  |
| Mix, measured at 450 nm immediately and record the absorbance.                        |          |          |       |  |

#### Note:

\*Reagents must be added sequentially and should not be premixed prior to addition.

\*\* The concentrations can vary over a wide range depending on the different samples. For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range.



#### VII. CALCULATION

1. Calculate the sample concentration in ASSAY PROCEDURE according to the slope of

the standard curve

$$C = \frac{(OD_{Sample} - OD_{Blank}) - Intercept}{Slope} \times n (mmol/L)$$

Calculate the initial concentration according to sample preparation procedure.

#### 2. According to one point of the standard OD and concentration

2.1 According to the protein concentration of sample

$$C = \frac{(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Blank})}{(OD_{Standard} - OD_{Blank}) \times C_{Protein} \times V_{Sample}} (\mu mol/mg)$$

2.2 According to the quantity of cells or bacteria

$$C = \frac{(C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Sample}} - OD_{\text{Blank}})}{(OD_{\text{Standard}} - OD_{\text{Blank}}) \times N \times (V_{\text{Sample}} / V_{\text{Assay}})} \quad (\mu \text{mol}/10^4)$$

2.3 According to the weight of sample

$$C = \frac{(C_{Standard} \times V_{Standard}) \times (OD_{Sample} - OD_{Blank})}{(OD_{Standard} - OD_{Blank}) \times W \times (V_{Sample} / V_{Assay})} (\mu mol/g)$$

2.4 According to the volume of sample

$$C = \frac{(C_{\text{standard}} \times V_{\text{Standard}}) \times (OD_{\text{sample}} - OD_{\text{Blank}})}{(OD_{\text{standard}} - OD_{\text{Blank}}) \times V_{\text{sample}}} (\mu \text{mol/ml})$$

Slope: the absorbance slope of standard curve

n: the dilution factor

 $C_{Standard}$ : the standard concentration, mmol/L =  $\mu$ mol/ml

 $V_{\text{Standard}}$ : the volume of standard in assay procedure,  $\mu l$ 

 $V_{Sample}$ : the volume of sample in assay procedure,  $\mu I$ 

 $V_{Assay}$ : the volume of Assay Buffer,  $\mu I$ 

C<sub>Protein</sub>: the sample protein concentration, mg/ml

W: the weight of sample, g

V: the volume of sample in sample preparation, ml

N: the quantity of cell or bacteria, 10<sup>4</sup>



#### VIII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.



Detection Range: 0.01 mmol/L - 1 mmol/L



Determination of D-xylose in Core Cob