

Sucrase Microplate Assay Kit User Manual

Catalog # CAK1037

(Version 1.2D)

Detection and Quantification of Sucrase Activity in Tissue extracts, Cell lysate Samples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	3
IV. SAMPLE PREPARATION	4
V. ASSAY PROCEDURE	5
VI. CALCULATION	6
VII. TYPICAL DATA	7
VIII. TECHNICAL SUPPORT	7
IX NOTES	7

I. INTRODUCTION

Sucrase is the name given to a number of enzymes located in on the brush border of the small intestine that catalyze the hydrolysis of sucrose to fructose and glucose.

The enzyme invertase, which occurs more commonly in plants, also hydrolyzes sucrose but by a different mechanism.

Sucrase Microplate Assay Kit provides a convenient means to measure sucrase activity in biological samples. In the assay, sucrase cleaves sucrose, resulting in the formation of fructose and glucose. The enzyme catalysed reaction products can be measured at a colorimetric readout at 540 nm.

II. KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 ml x 4	4 °C
Substrate	4 ml x 1	4 °C
Stop Solution	2 ml x 1	4 °C
Dye Reagent	10 ml x 1	4 °C
Standard	Powder x 1	4 °C
Positive Control	Powder x 1	-20 °C
Plate Adhesive Strips	3 Strips	
Technical Manual	1 Manual	

Note:

Standard: add 1 ml distilled water to dissolve before use, the concentration will be 20 mmol/L.

Positive Control: add 1 ml distilled water to dissolve before use.

III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 540 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer
- 8. Ice
- 9. Convection oven

IV. SAMPLE PREPARATION

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For liquid samples

Detect directly.

V. ASSAY PROCEDURE

Add following reagents into the microplate:

Reagent	Sample	Control	Standard	Blank	Positive		
					Control		
Sample	40 μΙ				40 μΙ		
Stop Solution		20 μΙ					
Substrate	40 μΙ	40 μΙ			40 μΙ		
Mix, put it in the oven, 37 °C for 5 minutes.							
Stop Solution	20 μΙ				20 μΙ		
Standard			40 μΙ				
Distilled water		40 μΙ	60 μΙ	100 μΙ			
Dye Reagent	100 μΙ	100 μΙ	100 μΙ	100 μΙ	100 μΙ		
Mix, put it into the convection oven, 90 °C for 10 minutes, record absorbance							

measured at 540nm.

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.
- 3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

Unit Definition: One unit of Sucrase activity is the enzyme that generates 1 μ mol of reducing sugars per minute.

1. According to the protein concentration of sample

Sucrase (U/mg) =
$$C_{Standard} \times V_{Standard} \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) /$$

$$(V_{Sample} \times C_{Protein}) / T$$

$$= (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$$

2. According to the weight of sample

Sucrase (U/g) =
$$C_{Standard} \times V_{Standard} \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / (W \times V_{Sample} / V_{Assay}) / T$$

$$= (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / W$$

3. According to the quantity of cell or bacteria

Sucrase (U/10⁴) =
$$C_{Standard} \times V_{Standard} \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / (N \times V_{Sample} / V_{Assay}) / T$$

$$= (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / N$$

4. According to the volume of sample

Sucrase (U/mI) =
$$C_{Standard} \times V_{Standard} \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / V_{Sample} / T$$

$$= (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank})$$

C_{Protein}: the protein concentration, mg/ml;

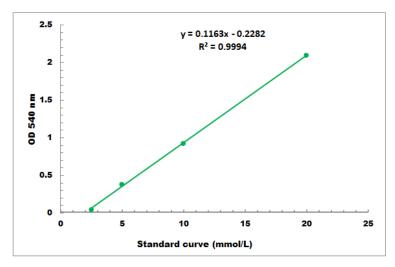
 $C_{Standard}$: the concentration of Standard, 20 mmol/L = 20 µmol/ml;

W: the weight of sample, g;

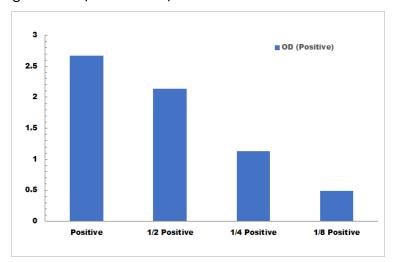
N: the quantity of cell or bacteria, $N \times 10^4$;

V_{Sample}: the volume of sample, 0.04 ml;

V_{Standard}: the volume of sample, 0.04 ml;


V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 5 minutes.



VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 2 mmol/L - 20 mmol/L

Positive Control reaction in 96-well plate assay with decreasing the concentration

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES